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VATI0_AL ADVISORY COMMITTEE FOR xERONAUTICS

TECHNICAL NOTE _0. 489

AERODYNxMIC CHARACTERISTICS OF AYEMOMETER CUPS

By M. J. Brevoort and U. T, Joyner

SUMMARY

The static llft and drag forces on three hemispher-

ical and two conical cu_s were measured over a range of

an_sles of attack from 0 _ to 180 ° and a range of Reynolds

Numbers from very small up to 400,000. The problem of

supporting the cup for measurez_ent and the effect of tur-

bulence were also studied. The results are compared with

those of other investigators.

!NTRODUCT I01_

The _fational Advisory Committee for Aeronautics, in

cooperation with the Weather Bureau, undertook the prob-

lem of determining the laws governing the performance of

a cup anemometer of the Robinson type. The investigation
was intended to cover the characteristics of individual

cups and of similar cups mounted on complete cup wheels.

This report treats the static tests run on the individual

cups.

The forces on hemispherical cups have already been

_f._easured over a small range of Reynolds Number. The work

of Eiffel (reference l) was of a preliminary nature per-

forn_ed in conz_ection with measurements on spheres. [3rad-

fieldls tests (reference 2) were part of an investigation

on complete cup wheels, no attempt having been made to de-

termine the effect of Reynolds i_umber. Hansenls tests

(reference 3) were made on both open and closed hemispher-

ical cups at Reynolds Numbers ranging from 130,000 to

430,000.

In view of the fact that in service the cups on a cup
wheel are subject to a very great ravage of velocities and

considering the lack of satisfactory agreement between

available data, it was considered desirable to extend and
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repeat this work to determine the effect of Reynolds Num-

ber more completelY.

A study was also made to determine the effect of
various supports in. several or lentations with respect to

the cup.

APPARATUS _D _ETHODS

.... All the measurements presented in this report were
made in the mod_l of the full-scale tunnel described in

reference 4. A special balance was constructed for meas-

uring the lift and,drag on individual cups (fig. i).
•Forces of the order of one gram could be measured accu-

rately. The maximum load on each arm was limited to about

one kilogram. Since the forces on the G-inch cup consid-

erably exceeded this limit at high velocities, a balance

arrangement (fig. 2), assembled for subsequent tests, was

utilized for the high-vel0city part of the range.

The dimensions of the five cups used in this investi-
gation are given in the foll0wing table; the conical forms

are shown in figure 3

numberCu2_......

I

II

III

IV

V

Hemispiierical

Conical

Hemispherical

Conical

Hemispherical

Outside diameter,

inches

4.0S

4.56

2.08

4.70

6.00

A velocity survey was laade with and without the cup
in the tunnel. L_ point was found above and in front of

the cup at which air speed could be measured without in-

terference from the cup and at which the true reading was

maintained throughout the speed range. A calibrated pitot

tube was used for measuring air s_eed _. 0win_g to the lack

of sensitivity of a p_t_t '_tube for low velocity, a hot-

wire anemometer was used in this rang_. For comparison,

the two ranges were always made to overlap.
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RESULTS AND DIS CUSS I0N

The: results for cup I at 0 ° angle of attack are pre-

sented in the table° Similar tables for the complete

range of angle 0f attack for all five cups are available

upon request from the National Advisory Committee for Aero-

naut i C_. _ '
• 7

' _ Th'e: coefflcients are defined as follows:

force downstream

force cross streameL ........... .................
q.a.

CN = CD cos G + CL sin

where A is the cross-sectional area of the open face

of the cup using outside dimensions,

V is the air speed

U, kinematic viscosity

D, the outside diameter of the open face of the

cup "

_, the angle of attack measured as indicated in

figures 1 and 2,

The normal-force coefficient CN is positive when

the normal force is in the direction of rotation of a cup
mounted on a cup wheel.

The results obtained for the five _up_ are shown in

figures 4 to 10. These curve_ a_e a result of cr0ss:-plot -

ting faired curves of the coefficients_agaTn_t Reynolds

Number. Each of the original curves of a doegficient _'T

against Reynolds Number at a oartlcular angle of attack

was determined by passing a smooth curve through'_he_great -

est number of about 20 points. It was thought undesirable

to assume beforehand any general form of _rve inasmuch as

no information is available that would allow the form of

curve to be predicted.
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Figures 4, 5, a_d 6 are cross-plots of the faired
curves of cups I, IIi, a:°.d V. They check the results of
Bradfield and Hansen (refer_l_cos 2 and 3). A more direct

comparison at the same Reynolds Number is given in figure

ii. Bradfield has discussed the discontinuity occurring

at 450 angle of attack on the C D curves. He found, on

gradually varying the angle, that around 45 o angle of %t-

tack the balance vibrated between two extremes. The points

before and after this angle definitely fall on two differ-

ent curves. The results presented here confirm Bradfieldls

observations and also exhibit singular points on the C L

curves in the range of angles of attack from 900 to 120 °.

The exact location of these singularities apparently de-

pends largely upon the Reynolds Number.

In the CD curve near the 90 ° angle of attack a _in-

imum occurs which may be due either to the minimum expozed

area or the highest effective Reynolds Number. Either fac-

tor would tend to lower the value of CD.

At 180 ° angle of attack the value of C D is practi-

cally the same as that obtained for a sphere below the

critical Reynolds Number. Unfortunately, the maximum wind-

tunnel speed was not high enough to permit an investigation

above the critical Reynolds Numbers.

The conical cups (figs. 7, 8, 9, and i0) exhibit much

the same tendencies as the hemispherical cups with the ex-

ception of cup II at 45 ° angle of attack for which the usu-

al discontinuity does not occur. Later tests will show

whether this property makes any material difference in the

performance of a cup wheel employing this cup form.

All the cups show more or less regular trends with

Reynolds Number for certain ranges of angle of attack.
For instance, in the 90 ° to 135- angle-of-attack range, a

definite increase in CL with increase of Reynol_is Num-

ber occurs. In the 0 ° to 60 ° range of angle of attack for

the CD curves, there is again definite indication of the

dependence of the coefficients on Reynolds Number; but the

relationships are not so simple as in the previous case,

as may be observed in the 0 (very small) Reynolds Number

curves, which are uniformly high.

A series of tests were performed to determine the ef-

fect of the mounting on the forces on the anemometer cups.

A 6-inch cup was used with a 1-inch-diameter rod. Figure
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1/2 g_ives CD and _ CL against angle-of-attack curves for
tlhe types of mounting Shown on the same figure. The des-
ignation "plain cup" refers to a cup mounted with the rod
extending from the bottom of the cup perpendicular to the
open face of the cup. The rod is supported on the balance
in a horizontal plane 600 to the air stream. This-mount-
ing was maintained undisturbed throughout the tests on
the effect of mounting. In mounting 1 a rod was support-
ed horizontally and parallel to the face of the Cup with
one end about 1/16 inch from the leading edge of the cup.
Mounting S is the same as 1 except that the end of the
rod is brought to about 1/16 inch from the trailing edge
of the cup. In mounting 3, a rod is sup!_orted horizontally
across the center of the cup face about 1/16 inch in front
of the cup. In mounting 4, a rod is supported through tLe
center of the cup face extending to within 1/4 inch from
the back of the cup. In mounting 5, a rod is clamped ver-
tically extending to 1/16 inch from the under side of the
cup. In mounting S, a rod is soldered horizontally across
the open fa_e of the cup, and in mounting 7, a rod is sol-
dered vertically across the open face of the cup.

These mountings were chosen not only for their co_luec-
tion to a st_idy of individual cups, but also for their
bearing on _ae effect of supports in a complete cup whe_l.
The plain-cup mountin_ is believed to be without support
interference and this type of support has also been found
satisfactory for drag measurements on spheres.

Mountings I and 2 correspond to the mountings used by
Bradfield and Hansen (references 2 and 3). /The curves of

figure 12 show that a rod extending from the _trailing edge

has little effect as compared with a rod extending from

the leading edge. The curves lead one to expect some dis-

crepancy between the p_esent results using mounting 5 and

those of Bradfield and Hansen. The agreement of the re-

sults obtained using mounting 5 with those obtained using

plain-cup indicates that mounting 5 is reasonably free of

support interference. It is desirable to have the forces

free from support interference so that the angle-of-attack

range may be 0 ° to 180 ° instead of 0 ° to 360 o .

Figure ii gives a comparison of the results of this

investigation with those of Brsdfiold and Hansen. The re-

sults show fair ajreement except in the range of 40 o to
120 o angle of attack where the method of mounting is impor-

tant, and in the range of ll0 ° to 120 ° where the size of

cup has an effect not accounted for by Reynolds Number.
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_n order to detern_Ine the effect of turbulence, a se-
r'ies of _tests"w_ m_made in w1_ich the n0r1_al turbuience of
()',4 p_rcen_'-_measur_d by the method outlined in reference
5, wa_ va-ried up to 2.0 perce_t Using for q the aver-

&ge ..ffy, na:_fC"press,_re at the pos'_tion of the cup, no de- :

pendegce.o.fthe coefficients on turbulence could "Se de- -
Ce ete'&. :': ........ ' "
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[igure 4.-- Drag coefficient against angle of attack for hemispheri-
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_Igure 5.- Lift coefficient against angle of attack for hemispheri-

cal anemometer cups I_III, and V. Numbers indicateReynolds Number x 10- .
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Figure 9.-- Lift and drag coefficients against angle of attack for
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Number x I0- .
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